Ξ±-strongly convex

A Convex function ff is Ξ±\alpha-strongly convex if, for all 𝐱,𝐲\mathbf{x},\mathbf{y}: [f(𝐲)βˆ’f(𝐱)]βˆ’βˆ‡f(𝐱)𝖳(π²βˆ’π±)β‰₯Ξ±2||π±βˆ’π²||22[f(\mathbf{y})-f(\mathbf{x})]-\nabla f(\mathbf{x})^\mathsf{T}(\mathbf{y}-\mathbf{x}) \geq \frac{\alpha}{2}||\mathbf{x}-\mathbf{y}||_2^2

Compare to smoothness condition [f(𝐲)βˆ’f(𝐱)]βˆ’βˆ‡f(𝐱)𝖳(π²βˆ’π±)≀β2||π±βˆ’π²||22[f(\mathbf{y})-f(\mathbf{x})]-\nabla f(\mathbf{x})^\mathsf{T}(\mathbf{y}-\mathbf{x}) \leq \frac{\beta}{2}||\mathbf{x}-\mathbf{y}||_2^2

For twice-differentiable scalar function ff, equivalent to fβ€³(x)β‰₯Ξ±f''(x) \geq \alpha .

When ff is convex, we always have that fβ€³(x)β‰₯0f''(x) β‰₯ 0, so larger values of Ξ±Ξ± correspond to a β€œstronger” condition.


A function is Ξ±\alpha-strongly convex and Ξ²-smooth if for all 𝐱,𝐲\mathbf{x},\mathbf{y}: Ξ±2||π²βˆ’π±||22≀[f(𝐲)βˆ’f(𝐱)]βˆ’βˆ‡f(𝐱)𝖳(π²βˆ’π±)≀β2||π²βˆ’π±||22\frac{\alpha}{2}||\mathbf{y}-\mathbf{x}||_2^2 \leq [f(\mathbf{y})-f(\mathbf{x})]-\nabla f(\mathbf{x})^\mathsf{T}(\mathbf{y}-\mathbf{x}) \leq \frac{\beta}{2}||\mathbf{y}-\mathbf{x}||_2^2 (multidimensional generalization)


For scalar functions, a twice-differentiable function ff is Ξ±\alpha-strongly convex and Ξ²-smooth if for all xx, α≀fβ€³(x)≀β\alpha \leq f''(x) \leq \beta

NOTE: this definition requires scalar function and twice differentiable i.e. C2C^2 relate the two definitions via Taylor's theorem in 1 variable,

Condition number: Ξ²/Ξ±\beta/\alpha